Tag Archives: Hillary Koprowski

Hilary Koprowski: Genesis of a Virologist

Several years before Jonas Salk and Albert Sabin developed their famous polio vaccines, Hilary Koprowski (1916-2013) in fact developed the world’s first effective, but much less well known polio vaccine (1, 2). Koprowski’s vaccine was used world-wide, but it was never licensed in the United States, ultimately losing out to Sabin’s vaccine.

Koprowski’s reputation was tarnished in 1950, when he tested his live polio vaccine on 20 children at Letchworth Village for mentally disabled children, in Rockland County, NY; an episode recounted in a recent posting Vaccine Research Using Children (1). Koprowski reported on the Letchworth Village trials at a 1951 conference of major polio researchers. Although his vaccine induced immunity in the children, and caused no ill effects, many scientists in the audience were horrified that he actually tested a live polio vaccine in human children. Afterwards, Sabin shouted at him: “Why did you do it? Why? Why?”

Although Koprowski’s polio vaccine was supplanted by the Salk and Sabin vaccines, his demonstration, that a live polio vaccine could be safe and effective, paved the way for Sabin to develop his live polio vaccine. Moreover, Sabin developed his vaccine from a sample of attenuated poliovirus that he received from Koprowski.

There is much more to tell about Koprowski. This posting relates some of the remarkable earlier events of his life, including his harrowing escape from Poland on the eve of the Second World War; a flight which inadvertently led to his career in virology. A subsequent posting will recount the now discredited, although sensational at the time, accusation that Koprowski’s polio vaccine gave rise to the HIV/AIDS epidemic.

Koprowski was born and grew up in Warsaw, where he earned a medical degree from Warsaw University in 1939. He also was an accomplished pianist, having studied piano from the age of 12 at the prestigious Warsaw Conservatory, where Chopin is said to have studied. Koprowski eventually earned a music degree from the Conservatory. He recalled, “…the first year I was the youngest and voted second best in the class (3).”


Hilary Koprowski in Warsaw (2007)

In 1938, while Koprowski was in medical school, he married classmate Irena Grasberg who, in later years, would wonder how they had found the time for their courtship. Each had to contend with a demanding medical school program, while Hilary’s piano studies at the Conservatory was a full time program in itself (3). Irena recalled a day before both of them had an anatomy exam, and Hilary had an important recital. Hilary practiced a recital piece, while simultaneously studying a chart on the music rack showing the bones of the hand; all the while as Irena read anatomy to him.

Koprowski eventually chose a career in medicine, rather than one in music. As he explained: “…the top of the music pyramid is much narrower than that of medicine, where there is more space for successful scientists (3).” Koprowski rated himself only fourth best in his class at the Warsaw Conservatory, and he needed to excel. Yet he may have underrated himself. His piano professor at the Conservatory was “greatly disappointed” when he chose to enter medicine (3). [After the 1944 Warsaw uprising, Koprowski’s piano professor was arrested and beaten to death by German soldiers (see below and 3).] In any case, Koprowski continued to play the piano, and he even did some composing in his later years.

Germany invaded Poland in September 1939, setting off the Second World War. As German bombs were falling on Warsaw, Koprowski answered the call for Polish men to go east, where Polish forces were organizing to resist the Germans. Irena, now pregnant, and Hilary’s mother went with him, while his father chose to remain behind. They made their way in a horse-drawn hay wagon, traveling at night to avoid German planes that were strafing the roads during the day. After a week or so on the road, they encountered refugees moving in the opposite direction. Those refugees told them that Russia had signed a pact with Germany and was now invading Poland from the east (Aside 1). So the three Koprowskis joined the flood of refugees moving to the east. When they arrived back in Warsaw, they found the city in ruins. Many of their friends and neighbors had been killed or were seriously wounded, and the city was occupied by German soldiers.

[Aside 1: The German–Soviet Non-aggression Pact was signed in Moscow in August 1939, as a guarantee of non-belligerence between Nazi Germany and the communist Soviet Union. Hitler broke the pact in June 1941 when Germany attacked Soviet positions in eastern Poland. Hitler had no intention of keeping to the pact. However, it temporarily enabled him to avoid having to fight a war on two fronts—against Britain and France in the west and the Soviet Union in the east.]

Once Germany had conquered Poland, German and Polish Jews began to be sent to concentration camps set up in Poland. The Koprowskis, who were Jewish (Salk and Sabin too were descendants of eastern European Jews), quickly made plans to leave Poland. Their first destination was to be Rome. Hilary’s father went there first to arrange living conditions for the family. To facilitate the escape of Hilary’s father from Poland, Hilary and Irena wrapped him in bandages, hoping that the authorities might gladly believe they were letting a very frail individual depart from the country.

Hilary, Irena, and Hilary’s mother then traveled by train from Warsaw to Rome. It was a harrowing trip. Irena was pregnant, and the Gestapo was roaming the trains. They feared that they might have been arrested at any time.

In Rome, the Koprowski family’s main concern was the safety of Irena and her unborn baby. Since Irena had an aunt in Paris, who would know of a good doctor there, the family thought that Paris would be a safe place for the baby to be born. Thus, Irena left for Paris, accompanied by Hilary’s father. She gave birth to Claude five days after arriving there.

Hilary did not go with Irena to France. If he had done so, he would have been impressed immediately into the Polish Army that was forming there to fight the Germans. Yet he knew that he would eventually have to leave Rome. Italy, under Mussolini’s leadership, was poised to enter the Second World War, as an Axis partner of Hitler’s Germany.

After Claude was born, Irena worked as a physician at a psychiatric hospital in Villejuif, just outside of Paris. She was the sole internist there for eight hundred patients. She kept Claude at the hospital, in a locked room, which she would slip to away every three hours to nurse him.

Back in Rome, Hilary continued to play the piano. In fact, he auditioned for, and was accepted by Rome’s L’Accademia di Santa Cecilia, which awarded him a second degree in music. Importantly, his skill at the keyboard enabled him to get visas for himself and his mother to enter Brazil, which the family hoped would be a safe haven. The best students from L’Accademia di Santa Cecilia were often in demand to play for events at the Brazilian embassy in Rome. Thus, on several occasions, Hilary played the piano at the embassy. Brazil’s consul general admired Hilary’s pianism and was pleased to arrange Brazilian entry visas for Hilary and his mother. See Aside 2.

[Aside 2: The day after Hilary arrived in Rome, he volunteered to serve as a medical examiner for a Polish draft board that was set up in the Polish embassy. The draft board’s activity at the embassy—recruiting Poles for the Polish Army—violated diplomatic protocol. In addition, Italy would soon be Germany’s Axis partner in the War. Moreover, Brazil, though neutral in the War, favored the Axis.]

Hilary and his mother had been making plans to leave Italy. Their destination was to be Spain, where they hoped they might unite with Irena, Claude, and Hilary’s father.  From Spain, the family might then go to Portugal, where they could get a boat to Brazil. But, on the very day that Hilary and his mother were to leave Italy, Mussolini issued a proclamation banning any male of military age from leaving the country. So it happened that Hilary’s escape from Italy was blocked at the boat registration. However, his mother rose to the occasion, crying and pleading with the boat registration official that she was sick, that Hilary was her sole means of support, and that she could not go on without him. “The man looked at his watch and said he must go to lunch. He looked at us and said, ‘If the boat leaves before I return, that’s my bad luck (3).’” So, Hilary and his mother boarded the boat, which left before the official returned. [Hilary’s mother was a well-educated woman, and a dentist by profession.]

In Spain, Hilary and his mother stayed at a hotel in Barcelona. Despite the wartime conditions, they were able to communicate, if only sporadically, with Irena and Hilary’s father, who were still in France. Then, after Germany invaded France in 1940, Irena, Claude, and Hilary’s father reunited with Hilary and his mother in Barcelona. [The escape of Irena, Claude, and Hilary’s father from France was far more harrowing than the escape of Hilary and his mother from Italy (See 3 for details).]

The family now needed to get to Portugal, where they could then get a boat to Brazil. Irena had already obtained Portuguese visas for herself and for Claude. But Hilary and his mother only had visas for Brazil. Hilary’s applications for visas at the Portuguese embassy were repeatedly denied, until a fellow Pole at Hilary’s Barcelona hotel advised him of the obligatory bribe that must accompany visa applications. The advice was right-on, and the family (minus Hilary’s father, who chose to go to England) sailed for Brazil without further incident.

In Brazil, Irena found work in Rio de Janeiro as a nurse. But she soon managed to secure a position as a pathologist at the largest hospital in the city. Hilary, on the other hand, could not find a job in medicine and, so, he turned to teaching piano. After six months of teaching unenthusiastic piano students, Hilary by chance recognized a man on the street in Rio who happened to be a former schoolmate from Warsaw. The man also happened to be working at the Rockefeller Foundation’s outpost in Rio. He told Hilary that the Foundation was looking for people, and he also told Hilary who he should contact there. Hilary interviewed at the Foundation the next day, and was told to report for work the day after that.

The Foundation assigned Hilary to research how well, and for how long the attenuated yellow fever vaccine—developed by Nobel laureate Max Theiler in 1935 (4) —might protect against yellow fever. The disease was endemic in Brazil, and it was actually the Rockefeller Foundation’s first priority.

Hilary’s supervisor at the Foundation was Edwin Lennette; a staff member of the International Health Division of the Rockefeller Foundation, assigned to its Brazilian outpost, specifically because of his interest in yellow fever. In 1944, Lennette would be reassigned to the Rockefeller Foundation laboratory in Berkeley, California, where he would establish the first diagnostic virology laboratory in the United States. Indeed, Lennette is known as one of the founders of diagnostic virology. But, in Brazil, he introduced Hilary Koprowski to virology.

Hilary’s apprenticeship under Lennette was going very well. It would result in nine papers—published between 1944 and 1946— that Hilary would co-author with Lennette. Moreover, Lennette was interested in other viruses, in addition to yellow fever. Thus, their co-authored papers included studies of Venezuelan equine encephalitis virus, Japanese encephalitis virus, St. Louis encephalitis virus, and West Nile virus, as well as yellow fever.

Most importantly, Koprowski’s work under Lennette introduced him to Max Theiler’s methods and approach to viral attenuation. In brief, Theiler found that propagating yellow fever virus in an unnatural host—chick embryos—caused the virus to adapt to that host, thereby reducing its capacity to cause disease in humans.  Koprowski would later acknowledge that Theiler provided him with a “most encouraging model” for attenuating poliovirus. [Koprowski attenuated poliovirus by propagating it first in mice and then in rats. Recall that Sabin developed his live polio vaccine from attenuated poliovirus that he received from Koprowski (1).] See Asides 3 and 4.

[Aside 3: The rabies vaccine, which Louis Pasteur developed in 1885, is often referred to as the first attenuated virus vaccine. Nevertheless, while Pasteur did passage his vaccine virus in rabbit spinal cords, the virus may have been killed when the spinal cords were later dried for up to fourteen days. Also, in Pasteur’s day, nothing was known about immunity or mutation, and viruses had not yet been identified as microbes distinct from bacteria. The yellow fever vaccine developed by Max Theiler at the Rockefeller Institute (now University) in New York may have been the first deliberately attenuated viral vaccine.]

[Aside 4: Koprowski and Lennette were among the first researchers to observe that infection by one virus (yellow fever, in this instance) might inhibit the growth of another unrelated virus (West Nile virus, in this instance). That is, they had inadvertently detected what later would be known as interferon. Yet while they looked for an anti-viral substance in their tissue culture media, and while their results suggest that it actually was there, they stated in their summary that nonspecific anti-viral factors were not present (5). Koprowski and Lennette collaborated again in the 1970s; this time to investigate subacute sclerosing panencephalitis, a rare late complication of measles infection that results in neurodegeneration.]

Hilary continued to give piano recitals in Brazil, regretting only that he did not have time to practice the piano as much as he would have liked. Nonetheless, his piano playing expanded his circle of friends to include musicians, artists and writers, in addition to his fellow scientists. Moreover, Irena was satisfied with her medical practice, and with the many friends and rich social life that she and Hilary had in Brazil.

Earlier, in 1940, while Hilary was still in Rome, and expecting that the family would soon have to leave Europe, he believed that the United States would likely be the best destination for them. Thus, he applied to the United States for visas. He had nearly forgotten those applications when, in 1944, their numbers came up.

The Koprowski family now faced somewhat of a dilemma. It was happily settled in Brazil, and had no prospects in the United States. On the other hand, the Rockefeller Foundation’s yellow fever project was drawing to a close, and the Foundation was planning to leave Rio. Importantly, coming to America was now a “dream come true (3)”.  So, in December 1944, the Koprowskis boarded an aging steamer in Brazil, and sailed under wartime blackout conditions, through German submarine-infested waters, for New York City.

During Hilary’s his first days in America, he used the Rockefeller Institute library in Manhattan to work on manuscripts reporting his research in Brazil. During one of his visits to the Rockefeller, he happened to meet Peter Olitzky (Aside 5), an early polio researcher there, who arranged for Hilary to meet Harold Cox, the director of the virology department at Lederle Laboratories, in Pearl River, New York.  Hilary interviewed with Cox, who offered him a research position at Lederle, which Hilary accepted. Meanwhile, Irena was appointed an assistant pathologist at Cornell Medical College in Manhattan.

[Aside 5: In 1936, Olitzky and Sabin collaborated on a study at the Rockefeller Institute, which, although carefully done, wrongly concluded that poliovirus could attack nerve cells only; a result that did not bode well for the development of an attenuated polio vaccine.]

At Lederle, Hilary began the experiments that led to the world’s first successful polio vaccine. In 1950 he tested the live vaccine in eighteen mentally disabled children at Letchworth Village (1). None of these children had antibodies against poliovirus before he vaccinated them, but each of them was producing poliovirus antibodies after receiving the vaccine. Importantly, none of the children suffered ill effects. What’s more, Koprowski did not initiate the test. Rather, a Letchworth Village physician, fearing an outbreak of polio at the facility, came to Koprowski’s office at Lederle, requesting that Koprowski vaccinate the Letchworth children (1).



  1. Vaccine Research Using Children, Posted on the blog July 7, 2016.
  2. Jonas Salk and Albert Sabin: One of the Great Rivalries of Medical Science, Posed on the blog March 27, 2014.
  3. Roger Vaughan, Listen to the Music: The Life of Hilary Koprowski. Springer-Verlag, 2000.
  4. The Struggle Against Yellow Fever: Featuring Walter Reed and Max Theiler, Posted on the blog May 13, 4014.
  5. Lennette EH, Koprowski H., 1946. Interference between viruses in tissue culture, Journal of Experimental Medicine, 83:195–219.






Vaccine Research using Children

Children have been used in vaccine research since its very beginning, usually said to have been in 1796, when Edward Jenner inoculated 8-year-old James Phipps with cowpox, and then challenged young James with actual smallpox (1). However, earlier, in 1789, Jenner inoculated his own 10-month-old son, Edward Jr., with swinepox. Edward Jr. then came down with a pox disease, which he fortunately recovered from. His father then challenged him with smallpox.

Edward Jr. survived his exposure to smallpox. But, since Edward Sr. wanted to determine the duration of young Edward’s protection, he again challenged his son with smallpox in 1791, when the boy was two.  Edward Sr. inoculated his son yet again with smallpox when the boy was three. Fortunately, young Edward was resistant to each of the smallpox challenges his father subjected him to.

Jenner used several other young children in his experiments, including his second son, Robert, who was 11-months-old at the time. One of the children in Jenner’s experiments died from a fever; possibly caused by a microbial contaminant in an inoculum. [Microbes were not known in the late 18th century.]

We have no record of how Jenner (or his wife) felt about his use of his own children. However, there is reason to believe that Jenner felt some remorse over his use of James Phipps, who he referred to as “poor James.” Jenner looked after Phipps in later years, eventually building a cottage for him; even planting flowers in front of it himself.

By the 20th century, some of the most esteemed medical researchers were using children—in institutions for the mentally deficient—to test new drugs, vaccines, and even surgical procedures. These institutions were typically underfunded and understaffed. Several of them were cited for neglecting and abusing their residents. Moreover, their young patients were usually from poor families, or were orphans, or were abandoned. Thus, many of the children had no one to look out for their interests. In addition, research at these institutions was hidden from the public. [The goings-on at these institutions were, in general, hidden from the public, and most of the public likely preferred it that way.] Federal regulations that might have protected the children were not yet in existence, and federal approval was not even required to test vaccines and drugs.

In the early 1940s, Werner Henle, of the University of Pennsylvania, used children at Pennhurst—a Pennsylvania facility for the mentally deficient—in his research to develop an influenza vaccine. [Pennhurst was eventually  infamous for its inadequate staffing, and for neglecting and abusing its patients (2). It was closed in 1987, after two decades of federal legal actions.] Henle would inoculate his subjects with the vaccine, and then expose them to influenza, using an oxygen mask fitted to their faces.

Pennhurst, a state-funded Pennsylvania facility for the mentally deficient, was one of the most shameful examples of the neglect and mistreatment that was common at these institutions. It was the site of Werner Henle’s research in the 1940s to develop an influenza vaccine.
Pennhurst, a state-funded Pennsylvania facility for the mentally deficient, was one of the most shameful examples of the neglect and mistreatment that was common at these institutions. It was the site of Werner Henle’s research in the 1940s to develop an influenza vaccine.

Henle’s vaccine did not protect all of his subjects. Moreover, it frequently caused side effects. Additionally, Henle maintained (correctly?) that a proper test of a vaccine must include a control group (i.e., a group exposed to the virus, but not to the vaccine). Thus, he deliberately exposed unvaccinated children to influenza. Children who contracted influenza had fevers as high as 104o F, as well as typical flu-like aches and pains.

Despite Henle’s investigations at Pennhuerst, he was a highly renowned virologist, best known for his later research on Epstein Barr virus. See Aside 1.

      [Aside 1: While Henle was researching his influenza vaccine at Pennhurst, Jonas Salk concurrently worked on an influenza vaccine, using adult residents (ranging in age from 20 to 70 years) at the Ypsilanti State School in Michigan.]

Next, consider Hilary Koprowski, an early competitor of Jonas Salk and Albert Sabin in the race to develop a polio vaccine (3). By 1950, Koprowski was ready to test his live polio vaccine in people. [That was four years before Sabin would be ready to do the same with his live polio vaccine.] Koprowski had already found that his vaccine protected chimpanzees against polio virus. And, he also tested his vaccine on himself. Since neither he nor the chimpanzees suffered any ill effects, Koprowski proceeded to test his vaccine on 20 children at Letchworth Village for mentally disabled children, in Rockland County, NY.  [Like Pennhurst, Letchworth Village too was cited for inadequately caring for its residents.]  Seventeen of Koprowski’s inoculated children developed antibodies to the virus, and none developed complications.

Koprowski did not initiate his association with Letchworth. Actually, Letchworth administrators, fearing an outbreak of polio at the facility, approached Koprowski, requesting that he vaccinate the children. Koprowski gave each child “a tablespoon of infectious material” in half a glass of chocolate milk (4). Koprowski never deliberately infected the Letchworth children with virulent virus.

Koprowski reported the results of his Letchworth studies at a 1951 conference of major polio researchers, attended by both Salk and Sabin. When Koprowski announced that he actually had tested a live vaccine in children, many conferees were stunned, even horrified. Sabin shouted out: “Why did you do it? Why? Why (4)?” See Aside 2.

      [Aside 2: In the 1930s, Canadian scientist Maurice Brodie tested a killed polio vaccine in twelve children, who supposedly had been “volunteered by their parents (4).” For a short time Brodie was hailed as a hero. However, too little was known at the time for Brodie to ensure that his formaldehyde treatment had sufficiently inactivated the live polio virus. Consequently, Brodie’s vaccine actually caused polio in several of the children. After this incident, most polio researchers could not conceive of ever again testing a polio vaccine, much less a live one, in children.]

Neither Koprowski nor Letchworth Village administrators notified New York State officials about the tests. Approval from the state would seem to have been required, since Koprowski later admitted that he was certain he would have been turned down. And, it is not clear whether Koprowski or the school ever got consent from the parents to use their children. However, recall there were not yet any federal regulations that required them to do so.

Koprowski was untroubled by the uproar over his use of the Letchworth children, arguing that his experiments were necessary. Yet he later acknowledged: “if we did such a thing now we’d be put on jail…” But, he added, “If Jenner or Pasteur or Theiler (see Aside 2) or myself had to repeat and test our discoveries [today], there would be no smallpox vaccine, no rabies vaccine, no yellow fever vaccine, and no live oral polio vaccine.”  Moreover, he maintained that, secret or not, his use of the Letchworth children fit well within the boundaries of accepted scientific practice.

   [Aside 2: Nobel laureate Max Theiler developed a vaccine against yellow fever in 1937; the first successful live vaccine of any kind (5). Theiler formulated a test for the efficacy of his vaccine, which did not involve exposing humans to virulent virus. Sera from vaccinated human subjects were injected into mice, which were then challenged with the Yellow Fever virus.]

Koprowski referred to the Letchworth children as “volunteers (6).” This prompted the British journal The Lancet to write: “One of the reasons for the richness of the English language is that the meaning of some words is continually changing. Such a word is “volunteer.” We may yet read in a scientific journal that an experiment was carried out with twenty volunteer mice, and that twenty other mice volunteered as controls.” See Aside 3.

     [Aside 3: Koprowski was a relatively unknown scientist when he carried out his polio research at Letchworth. He later became a renowned virologist, having overseen the development of a rabies vaccine that is still used today, and having pioneered the use of therapeutic monoclonal antibodies. Yet, he is best remembered for developing the world’s first effective polio vaccine; several years before Salk and Sabin brought out their vaccines.

   Most readers of the blog are aware that the Salk and Sabin vaccines are credited with having made the world virtually polio-free. What then became of Koprowski’s vaccine? Although it was used on four continents, it was never licensed in the United States. A small field trial of Koprowski’s vaccine in 1956, in Belfast, showed that its attenuated virus could revert to a virulent form after inoculation into humans. Yet a 1958 test, in nearly a quarter million people in the Belgian Congo, showed that the vaccine was safe and effective. Regardless, the vaccine’s fate was sealed in 1960, when the U.S. Surgeon General rejected it on safety grounds, while approving the safer Sabin vaccine. Personalities and politics may well have played a role in that decision (3, 4).

  Interestingly, Sabin developed his vaccine from a partially attenuated polio virus stock that he received from Koprowski. It happened as follows. In the early 1950s, when Koprowski’s polio research was further along than Sabin’s, Sabin approached Koprowski with the suggestion that they might exchange virus samples. Koprowski generously sent Sabin his samples, but Sabin never reciprocated.

   Koprowski liked to say: “I introduce myself as the developer of the Sabin poliomyelitis vaccine (7).” He and Sabin had a sometimes heated adversarial relationship during the time when their vaccines were in competition. But they later became friends.]

Sabin was at last ready to test his polio vaccine in people during the winter of 1954-1955. Thirty adult prisoners, at a federal prison in Chillicothe, Ohio, were the subjects for that first test in humans. [The use of prisoners also raises ethical concerns.]

Recall Sabin’s public outcry in 1951 when Koprowski announced that he used institutionalized children to test his polio vaccine. In 1954, Sabin sought permission to do the very same himself; asserting to New York state officials: “Mentally defective children, who are under constant observation in an institution over long periods of time, offer the best opportunity for the careful and prolonged follow-up studies…”

Although Sabin had already tested his attenuated viruses in adult humans (prisoners), as well as in monkeys and chimpanzees, the National Foundation for Infantile Paralysis, which funded polio research in the pre-NIH days of the 1950s, blocked his proposal to use institutionalized children. Thus, Sabin again used adult prisoners at the federal prison in Ohio. With the concurrence of prison officials, virtually every inmate over 21 years-old “volunteered,” in exchange for $25 each, and a possible reduction in sentence. None of the prisoners in the study became ill, while all developed antibodies against polio virus.

Testing in children was still a necessary step before a polio vaccine could be administered to children on a widespread basis. But, Sabin’s vaccine could not be tested in children in the United States. Millions of American children had already received the killed Salk vaccine, and the National Foundation for Infantile Paralysis was not about to support another massive field trial of a vaccine, in children, in the United States (3).

Then, in 1959, after a succession of improbable events, 10 million children in the Soviet Union were vaccinated with Sabin’s vaccine (3). The Soviets were so pleased with the results of that massive trial that they next vaccinated all seventy-seven million Soviet citizens under 20 years-of-age with the Sabin vaccine. That figure vastly exceeded the number of individuals in the United States, who were vaccinated with the rival Salk vaccine during its field trials.

Next up, we have Nobel laureate John Enders who, in the 1950’s, oversaw the development of the first measles vaccine. Enders and co-workers carried out several trials of their attenuated measles vaccine; first in monkeys and then in themselves. Since the vaccine induced an increase in measles antibody titers, while causing no ill effects, they next tested it in severely handicapped children at the Walter E. Fernald State School near Waltham, Massachusetts.

Enders seemed somewhat more sensitive than either Henle or Koprowski to the ethics of using institutionalized children. Samuel L. Katz, the physician on Enders’ team, personally explained the trial to every Fernald parent, and no child was given the vaccine without written parental consent. [Federal guidelines requiring that step still did not exist.] Also, no child was deliberately infected with virulent measles virus.

Katz personally examined each of the inoculated Fernald children every day. None of these children produced measles virus, while all of them developed elevated levels of anti-measles antibodies. Also, the Fernald School had been experiencing severe measles outbreaks before the Enders team vaccinated any of its children. But, when the next measles outbreak struck the school, all of the vaccinated children were totally protected.

In 1963, the Enders vaccine became the first measles vaccine to be licensed in the United States. Several years later it was further attenuated by Maurice Hilleman (8) and colleagues at Merck. In 1971, it was incorporated into the Merck MMR (measles, mumps, and rubella) vaccine. See Aside 4.

    [Aside 4: Before Enders carried out his measles investigations he pioneered the growth of viruses in tissue culture. In 1949, Enders, and collaborators Thomas Weller and Frederick Robbins, showed that poliovirus could be cultivated in the laboratory. This development was crucial, allowing Salk and Sabin to grow a virtually unlimited amount of polio virus and, consequently, to develop their polio vaccines. In 1954, Enders, Weller, and Robbins were awarded the Nobel Prize for Physiology or Medicine for their polio virus work.]

It may surprise some readers that before the mid 1960s the so-called Nuremburg Code of 1947 comprised the only internationally recognized ethical guidelines for experimentation on human subjects. The Nuremburg Code was drawn up by an American military tribunal during the trial of 23 Nazi physicians and scientists for atrocities they committed while carrying out so-called “medical” experiments during World War II. [Sixteen of the 23 Nazis on trial at Nuremburg were convicted, and 7 of these were executed (see Note 1)].

The Nuremberg Code’s Directives for Human Experimentation contained strongly stated guidelines. Its tenets included the need to obtain informed consent (interpreted by some to prohibit research using children), the need to minimize the risks to human subjects, and the need to insure that any risks are offset by potential benefits to society.

But, despite the well-articulated principles of the Nuremberg Code, it had little effect on research conduct in the United States. Federal rules, with the authority to regulate research conduct, would be needed for that. So, how did our current federal oversight of research come to be?

A 1996 paper in the The New England Journal of Medicine, “Ethics and Clinical Research,” by physician Henry Beecher, brought to the fore the need for rules to protect human subjects in biomedical research (9). Beecher was roused to write the paper in part by the early 1960s experiments of Saul Krugman, an infectious disease expert at NYU. Krugman used mentally deficient children at the Willowbrook State School in Staten Island, New York, to show that hepatitis A and hepatitis B are distinct diseases (9). Also, before a hepatitis vaccine was available, Krugman inoculated the children with serum from convalescing individuals, to ask whether that serum might protect the children against hepatitis. Krugman exposed the children to live virus either by injection, or via milkshakes seeded with feces from children with hepatitis.

Krugman found that convalescent sera indeed conferred passive immunity to hepatitis. Next, he discovered that by infecting passively protected patients with live hepatitis virus he could produce active immunity. Krugman had, in fact, developed the world’s first vaccine against hepatitis B virus (HBV) (see Aside 4). [Although Krugman used mentally deficient institutionalized children in his experiments, his investigations were nonetheless funded in part by a federal agency; the Armed Forces Epidemiology Section of the U.S. Surgeon General’s Office.]

         [Aside 4: The first hepatitis B vaccine licensed for widespread use was developed at Merck, based on principles put forward by Nobel Laureate Baruch Blumberg, (10).]

Beecher was particularly troubled by two aspects of Krugman’s experiments. First, Krugman infected healthy children with live virulent virus. Beecher maintained that it is morally unacceptable to deliberately infect any individual with an infectious agent, irrespective of the potential benefits to society. [See reference 11 for an alternative view. “The ethical issue is the harm done by the infection, not the mere fact of infection itself.”]

Second, Beecher charged that the Willowbrook School’s administrators coerced parents into allowing their children to be used in Krugman’s research. The circumstances were as follows. Because of overcrowding at the school, Willowbrook administrators closed admission via the usual route. However, space was still available in a separate hepatitis research building, thereby enabling admission of additional children who might be used in the research.

Were the Willowbrook parents coerced into allowing their children to be used in the research there? Consider that the parents were poor and in desperate need of a means of providing care for their mentally impaired children. Making admission of the children contingent on allowing them to be used in the research might well be viewed as coercion. Yet even today, with federal guidelines now in place to protect human subjects, institutions such as the NIH Clinical Center admit patients who agree to participate in research programs. Is that coercion?

Beecher’s 1966 paper cited a total of 22 instances of medical research that Beecher claimed were unethical (9). Four examples involved research using children. Krugman’s work at Willowbrook was the only one of these four examples that involved vaccine research. Beecher’s other examples involved research using pregnant women, fetuses, and prisoners. But it was Beecher’s condemnation of Krugman’s hepatitis research at Willowbrook that is mainly credited with stirring debate over the ethics of using children in research.

Did Krugman deserve Beecher’s condemnation? Before Krugman began his investigations at Willowbrook, he plainly laid out his intentions in a 1958 paper in the New England Journal of Medicine (12). Importantly, Krugman listed a number of ethical considerations, which show that he did not undertake his Willowbrook investigations lightly. In fact, Krugman’s ethical considerations, together with his plans to minimize risks to the children, were not unlike the assurances one might now submit to an institutional review board (11).

Many (but not all) knowledgeable biomedical researchers claimed that Beecher misunderstood Krugman’s research and, thus, unjustly vilified him. Krugman was never officially censored for his Willowbrook investigations. Moreover, condemnation of Krugman did not prevent his election in 1972 to the presidency of the American Pediatric Society, or to his 1983 Lasker Public Service Award.

To Beecher’s credit, his 1966 paper was instrumental in raising awareness of the need to regulate research using human subjects. Beecher was especially concerned with the protection of children and, apropos that, the nature of informed consent.

In 1974, the National Research Act was signed into law, creating the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. The basic ethical principles identified by the Commission are summarized in its so-called Belmont Report, issued in 1978. Its tenets include minimizing harm to all patients, and the need to especially protect those with “diminished autonomy” or who are incapable of “self-determination.”  In addition, federal guidelines now require universities and other research institutions to have Institutional Review Boards to protect human subjects of biomedical research. [Reference 13 (available on line) contains a detailed history of the establishment of these policies.]  See Aside 6.

      [Aside 6: The infamous U.S. Public Health Service Tuskegee syphilis research program, conducted between 1932 and 1972, in which several hundred impoverished black men were improperly advised and never given appropriate treatment for their syphilis, also raised public awareness of the need to protect human subjects. More recently, research involving embryonic stem cells and fetuses has stoked an ongoing and heated public debate. Policies regarding this research are still not settled, with stem-cell research being legal in some states, and a crime in others. Other recent technological advances, such as DNA identification and shared databases, have been raising new concerns, such as the need to protect patient privacy. In response to these new developments, in June 2016, the US National Academies of Sciences, Engineering and Medicine released a report proposing new rules (indeed a complete overhaul of the 1978 Belmont Report) to deal with these circumstances. The Academy’s report has stirred debate in the biomedical community]

Note 1: The use of children in medical research makes many of us profoundly uneasy. We may be particularly troubled by accounts of the exploitation of institutionalized children, who comprised a uniquely defenseless part of society. Indeed, it was the very vulnerability of those children that made it possible for them to be exploited by researchers. Consequently, some readers may well be asking whether the activities of vaccine researchers Krugman, Koprowski, Sabin, Henle and others might have been comparable to that of the Nazis on trial at Nuremberg. So, I offer this cautionary interjection. While in no way condoning the vaccine researchers using institutionalized children, their work was carried out for the sole purpose of saving human lives. As Koprowski suggested above, if not for that work, we might not have vaccines against smallpox, rabies, yellow fever, and polio. Now, consider Josef Mengele, a Nazi medical officer at Auschwitz, and the most infamous of the Nazi physicians. [Mengele was discussed several times at Nuremberg, but was never actually tried. Allied forces were convinced at the time that he was dead, but he had escaped to South America.] At Auschwitz, Mengele conducted germ warfare “research” in which he would infect one twin with a disease such as typhus, and then transfuse that twin’s blood into the other twin. The first twin would be allowed to die, while the second twin would be killed so that the organs of the two children might then be compared. Mengele reputedly killed fourteen twin children in a single night via a chloroform injection to the heart. Moreover, he unnecessarily amputated limbs and he experimented on pregnant women before sending them to the Auschwitz gas chambers.


  1. Edward Jenner and the Smallpox Vaccine, Posted on the blog September 16, 2014.
  2.  Pennhurst Asylum: The Shame of Pennsylvania, weirnj.com/stories/pennhurst-asylum/
  3.  Jonas Salk and Albert Sabin: One of the Great Rivalries of Medical Science, Posed on the blog March 27, 2014.
  4.  Oshinsky D, Polio: An American Story, Oxford University Press, 2005.
  5. The Struggle Against Yellow Fever: Featuring Walter Reed and Max Theiler, Posted on the blog May 13, 2014.
  6.  Koprowski H, Jervis GA, and Norton TW. Immune response in human volunteers upon oral administration of a rodent-adapted strain of poliomyelitis virus. American Journal of Hygiene, 1952, 55:108-126.
  7.  Fox M, Hilary Koprowski, Who Developed First Live-Virus Polio Vaccine Dies at 96, N.Y. Times, April 20, 2013.
  8. Maurice Hilleman: Unsung Giant of Vaccinology, Posted on the blog April 14, 2014.
  9. Beecher HK. Ethics and clinical research. The New England Journal of Medicine, 1966, 274:1354–1360.
  10.  Baruch Blumberg: The Hepatitis B Virus and Vaccine, Posted on the blog June 2, 2016.
  11.  Robinson WM, The Hepatitis Experiments at the Willowbrook State School. science.jburrougs.org/mbahe/BioEthics/Articles/WillowbrookRobinson2008.pdf
  12. Ward R, Krugman S, Giles JP, Jacobs AM, Bodansky O. Infectious hepatitis: Studies of its natural history and prevention. The New England Journal of Medicine, 1958, 258:407-416.
  13.  Ethical Conduct of Clinical Research Involving Children. http://www.ncbi.nlm.nih.gov/books/NBK25549/



Ernest Goodpasture and the Egg in the Flu Vaccine

There is a cautionary note on the info sheet accompanying the influenza vaccine, which advises individuals who are allergic to eggs to speak with their doctors before receiving the vaccine. As most readers know, the reason for the warning is that the usual flu vaccine is grown in embryonated chicken eggs.

[Aside 1: The current trivalent influenza vaccine is prepared by inoculating separate batches of fertile chicken eggs; each with one of the three influenza strains (representing an H1N1, an H3N2, and a B strain) recommended by the WHO for the upcoming winter flu season. The monovalent viral yields are then combined to make the trivalent vaccine.]

But, why chicken eggs, and how did this state of affairs come to be? The backdrop to this tale is that until the third decade of the twentieth century, virologists were still searching for fruitful means to cultivate viruses outside of a live laboratory animal. This was so despite the fact that, as early as 1907, researchers had been developing procedures for maintaining viable tissues in culture. And, soon afterwards, virologists began to adapt tissue cultures as substrates for propagating viruses.

Yet as late as 1930, there were still only two antiviral vaccines—the smallpox vaccine developed by Edward Jenner in 1798 (1) and the rabies vaccine developed by Louis Pasteur in 1885. Bearing in mind that Jenner’s vaccine preceded the germ-theory of disease by a half century, and that Pasteur’s vaccine came 15 years before the actual discovery of viruses (as microbial agents that are distinct from bacteria), the development of these first two viral vaccines was fortunate indeed (2).

The principal factor holding up the development of new viral vaccines was that viruses, unlike bacteria, could not be propagated in pure culture. Instead, for reasons not yet understood, viruses could replicate only within a suitable host. And, notwithstanding early attempts to propagate viruses in tissue culture (reviewed below), developments had not yet reached a stage where that approach was fruitful enough to generate a vaccine. How then were Jenner and Pasteur able to produce their vaccines? See Aside 2 for the answers.

[Aside 2: Jenner, without any awareness of the existence of infectious microbes, obtained his initial inoculate by using a lance to pierce a cowpox postule on the wrist of a young milkmaid, Sarah Nelmes. Jenner then propagated the vaccine, while also transmitting immunity, by direct person-to-person transfer. (The rationale underlying Jenner’s vaccine, and his story, is told in detail in reference 1.)

Jenner’s live cowpox vaccine protected against smallpox because cowpox, which produces a relatively benign infection in humans, is immunologically cross-reactive with smallpox. Thus, inoculating humans with cowpox induces immunity that is active against cowpox and against smallpox as well. Jenner’s discovery of the smallpox vaccine, while not entirely fortuitous, was still providential, since immunity per se, as well as microbes, were unknown in Jenner’s day.

Following a successful worldwide vaccination program, smallpox was officially declared to be eradicated in 1977. The smallpox vaccine currently stockpiled in the United States contains live vaccinia; a virus that is immunologically related to cowpox and smallpox. Like cowpox, vaccinia causes a mild infection in humans.

The existing smallpox vaccine was grown in the skin of calves. It is now more than 40 years old and has not been used for years, but it is still believed to be effective.

Pasteur (probably the greatest and most famous microbiologist) was a pioneer of the germ theory of disease. Yet he developed his rabies vaccine more than a decade before the discovery of viruses. He did so by applying the same principle that he used earlier to produce a vaccine against cholera. That is, he “attenuated” the rabies agent. He began with virus that was contained in an extract from a rabid dog. Pasteur attenuated the virus for humans by successively passing extracts in the spinal cords of live rabbits, and then aging the last extracts in the series. Modern rabies vaccines are generally killed virus vaccines, prepared by chemically inactivating tissue culture lysates.]

In the years following the pioneering 19th century contributions of Pasteur, Koch, and Lister, and with the widespread acceptance of the germ theory of disease, microbiologists (that is, bacteriologists) appreciated the importance of working with “pure cultures” that could be grown in a sterilized medium. Yet this was proving to be impossible in the case of viruses. Moreover, as late as the 1930s, it was not understood why that should be so

At the very least, virologists would have liked to be able to cultivate viruses outside of a living animal host. The possibility of achieving that goal began to emerge when Ross G. Harrison, working at Johns Hopkins in 1907, became the first researcher to maintain bits of viable tissue outside of an animal. Harrison maintained frog neuroblasts in hanging drops of lymph medium. What’s more, under those conditions, the neuroblasts gave rise to outgrowths of nerve fibers.

In 1913, Edna Steinhardt became the first researcher to cultivate (or at least maintain) a virus (cowpox) in a tissue culture. Steinhardt did this by infecting hanging-drop cultures with corneal extracts from the eyes of cowpox-infected rabbits and guinea pigs. However, there was no methodology at the time for Steinhardt to determine whether the virus might have replicated in her tissue cultures.

In 1912, Alexis Carrel, working at the Rockefeller Institute, began a two-decade-long experiment that significantly increased interest in tissue culture. Carrel maintained tissue fragments from an embryonic chicken heart in a closed flask, which he regularly supplied with fresh nutrients. Later, he claimed that he maintained the viability of the culture for more than 20 years; well beyond the normal lifespan of a chicken. See Aside 3.

[Aside 3: Carrel’s experimental results could never be reproduced. In fact, in the 1960s, Leonard Hayflick and Paul Moorhead made the important discovery that differentiated cells can undergo only a limited number of divisions in culture before undergoing senescence and dying. It is not known how Carrel obtained his anomalous results. But, Carrel was an honored, if controversial scientist, having been awarded the 1912 Nobel Prize in Physiology or Medicine for pioneering vascular suturing techniques. In the 1930s Carrel developed an intriguing and close friendship with Charles Lindbergh, which began when Lindbergh sought out Carrel to see if Carrel might help Lindbergh’s sister, whose heart was damaged by rheumatic fever. Carrel could not help Lindbergh’s sister, but Lindbergh helped Carrel build the first perfusion pump, which laid the groundwork for open heart surgery and organ transplants. Carrel and Lindbergh also co-authored a book, The Culture of Organs. In the 1930s, Carrel, promoted enforced eugenics. During the Second World War, Carrel, who was French by birth, helped the Vichy French government put eugenics policies into practice. Moreover, he praised the eugenics policies of the Third Reich, leading to inconclusive investigations into whether he collaborated with the Nazis. Carrel died in November, 1944.]

In 1925 Frederic Parker and Robert Nye, at the Boston City Hospital, provided the first conclusive evidence for viral growth in a tissue culture. The virus was a strain of herpes simplex, which Parker and Nye received in the form of an extract from Ernest Goodpasture; soon to be the major character in our story. Parker and Nye established their first culture from the brain of a rabbit that was inoculated intracerebrally with an extract from an infected rabbit brain. The animal was sacrificed when in a convulsive state, and its brain was then removed aseptically. Small pieces of normal rabbit testes were added to pieces of brain in the cultures, to provide another potential host cell for the virus. Virus multiplication was demonstrated by inoculating diluents of subculture extracts into laboratory animals. A 1:50,000 diluent was able to transmit the infection.

At this point in our chronology, the pathologist Ernest Goodpasture, and the husband-wife team of Alice and Eugene Woodruff, enters our story. Goodpasture’s principal interest was then, as always, in pathology. He became interested in viruses while he was serving as a Navy doctor during World War I. But his focus was on the pathology of the 1918 influenza pandemic, which he studied in the first sailors stricken by the infection (3). He was later interested in herpetic encephalitis, and in how rabies virus made its way to the central nervous system, but always from the perspective of a pathologist.

Ernest Goodpasture. (I was unable to find a picture of Alice Woodruff.)
Ernest Goodpasture. (I was unable to find a picture of Alice Woodruff.)

In 1927, Eugene Woodruff was a newly graduated physician who joined Goodpasture in the Pathology Department at Vanderbilt University for training as a pathologist. Eugene’s wife, Alice, a Ph.D., came to the Vanderbilt Pathology Department a year later, as a research fellow in Goodpasture’s laboratory.

Goodpasture set Eugene Woodruff to work on fowlpox; a relative of smallpox, which, unlike cowpox, can not infect humans. Goodpasture was interested in the cellular pathology of fowlpox infection; specifically, in the nature of the inclusion bodies seen in fowlpox-infected cells. Using a micropipette, Woodruff was able to pick single inclusion bodies from infected chicken cells, and to then determine that inclusion bodies are intracellular crystalline arrays of the virus.

More apropos to our story, in the late 1920s, virologists still could not generate large amounts of virus that were free of bacteria and contaminating tissue elements. For that reason, Goodpasture believed that future important advancements in virology would require the development of methods to grow large amounts of virus in pure culture; an impossible goal. In any case, Goodpasture delegated Alice Woodruff to develop a method for growing fowlpox outside of a live chicken.

Goodpasture had already adapted Carrel’s tissue culture methods, which he used to maintain chick kidney tissue in culture. So, Alice’s first experiments were attempts to get fowlpox to propagate in cultures of chick kidney tissue. However, the virus stubbornly declined to grow in the tissue cultures. Goodpasture then suggested to Alice that she try to grow the virus in embryonated chicken eggs. But why did Goodpasture make that suggestion?

The answer isn’t clear. But, back in 1910, Peyton Rous and colleague James Murphy, at the Rockefeller Institute, fruitfully made use of fertile chick eggs to cultivate a virus, as described in Aside 4. However, Rous’ accomplishments, which eventually would be recognized as huge, were largely ignored for the next 50 or so years. (The reasons are discussed in reference 4.) Goodpasture may well have been unaware of Rous’ earlier work when he suggested to Alice that she try to cultivate fowlpox in chicken eggs. If so, then his suggestion to Alice may have been an original idea on his part, perhaps inspired by his thinking of the chick embryo as a sterile substrate that is enclosed in a naturally sterile container. On the other hand, he and Alice did note the earlier work of Rous and Murphy in the 1931 report of their own work. (In that paper, they state: “The production of experimental infection in the chorio-allantoic membrane has, however, been done only in the one instance where Rous and Murphy grew the virus of the Rous sarcoma.”). In any case, the chick embryo method for growing viruses had lain dormant for twenty years.

[Aside 4: Rous and Murphy cut a small window into the shells of six-to-sixteen-day-old embryonated chicken eggs, and then placed a bit of a filtered, cell-free extract from a chicken sarcoma into each. By one week’s time there was a tumor mass growing in each of the inoculated embryos. These studies led to Rous’ 1911 report of a filterable, infectious agent, eventually named the Rous sarcoma virus, which causes sarcomas in chickens. The Rous sarcoma virus was the first virus known to cause solid tumors and, moreover, it was the prototype of a virus family that eventually would be known as the retroviruses (4).]

Alice Woodruff’s procedure for infecting the chicken eggs began with her making a small window in the egg shell, at the site of the air sac. (An egg cup served as the operating table, and the window was cut with a dentist’s drill.) She then inoculated the viral extract into the outermost layer of the chorio-allantoic membrane, which encloses the embryo and provides an air channel into its body. Alice then closed the window with a piece of glass, held in place with Vaseline.

Alice tried to maintain sterility at all stages of her procedure. Yet despite the elegance of her techniques, she had nothing to show for these efforts except dead embryos that were overgrown with mold or bacteria. She then turned to her husband, Eugene, who was working in a separate laboratory, down the hall from her lab.

Alice and Eugene, working together, developed procedures to sterilely remove fowlpox lesions from the heads of chicks. In brief, the chick heads were shaved and then bathed in alcohol. Then, the lesions were excised with sterile instruments. Next, the excised lesions were tested for bacterial or fungal contamination by incubating fragments in nutrient broth. If a lesion was sterile by that test, it was deemed fit to be inoculated into the eggs.

Eugene further contributed to the effort by applying a technique that he developed earlier; picking out individual inclusion bodies from fowlpox-infected cells. When he discovered that the inclusion bodies could be disrupted into individual virus particles by incubating them in trypsin, he was able to provide Alice with virtually pure virus that she could inoculate the eggs with.

As Greer Williams relates in Virus Hunters (5): “Then, one morning when she peeked into the window of an egg that had been incubating for about a week after she had infected it with the virus, she saw something different. This chick embryo was still alive…She removed the embryo from the shell and examined it. It had a swollen claw. ‘Could this be due to fowlpox infection?’…She went to Goodpasture and put the same question to him…”

In Alice’s own words, “I can’t forget the thrill of that moment when Dr. Goodpasture came into my lab, and we stood by the hood where the incubator was installed and I showed him this swollen claw from the inoculated embryo (5).”

The swollen claw indeed resulted from the fowlpox infection. This was shown by the fact that when bits of the swollen tissue were transferred to other embryos, they in turn induced more swollen tissue. Moreover, these swollen tissues contained fowlpox inclusion bodies. Additionally, when transferred to adult chickens, those bits of swollen tissue produced typical fowlpox lesions.

During the next year, Goodpasture, Alice Woodruff, and Gerritt Budding (a lab assistant, who dropped out of medical school to participate in the chick embryo work) reported that cowpox and herpes simplex viruses could also be grown in the embryonated chicken eggs.

Later studies by Goodpasture and Buddingh showed that each embryonated chicken egg could produce enough vaccinia to produce more than 1,000 doses of smallpox vaccine. They also showed, in a case-study involving 1,074 individuals, that the chick-grown smallpox vaccine works as well in humans as the vaccine produced by inoculating the skin of calves. Regardless, the chick vaccine never caught on to replace the long-established, but cruder calf-grown vaccine (see Aside 2).

Goodpasture placed Alice’s name ahead of his own on their report describing the propagation of fowlpox in chicken eggs. Alice says that Goodpasture was “over-generous” in that regard. Howevever, much of the day-to-day lab work resulted from her initiatives. Eugene’s name also came before Goodpasture’s on the report describing the inclusion body study.

Shortly after completing these studies, Alice left research to raise a family. Eugene’s name also disappeared from the virus literature. But in his case that was because his interests turned to tuberculosis.

In 1932, soon after the above breakthroughs in Godpasture’s laboratory,  Max Theiler and Eugen Haagen developed their yellow fever vaccine (6), which initially was generated in embryo tissue from mice and chickens. But, starting in 1937, production of the yellow fever vaccine was switched to the embryonated egg method, in part, to “cure” the live yellow fever vaccine of its neurotropic tendencies.

Recall our introductory comments regarding the warning that individuals allergic to eggs should get medical advice before receiving the standard flu vaccine. In 1941, Thomas Francis, at the University of Michigan, used embryonated chicken eggs to produce the first influenza vaccine (see Asides 5 and 6). Remarkably, even today, in the era of recombinant DNA and proteomics, this seemingly quaint procedure is still the preferred means for producing the standard trivalent flu vaccine (see Aside 1).

[Aside 5: Thomas Francis produced his 1941influenza vaccine in response to urging by U.S. Armed Forces Epidemiological Board. With the Second World War underway in Europe and Asia, and with the 1918 influenza pandemic in mind, there was fear that if an influenza epidemic were to emerge during the upcoming winter, it might impede the military training that might be necessary. An epidemic did not materialize that winter, but the vaccine was ready, and we were at war.]

[Aside 6: Thomas Francis was one of the great pioneers of medical virology. The same year that he developed his flu vaccine, Jonas Salk (recently graduated from NYU medical school) came to his laboratory for postgraduate studies. Francis taught Salk his methodology for vaccine development, which ultimately enabled Salk to develop his polio vaccine (7).]

Next, Hillary Koprowski developed a safer, less painful and more effective rabies vaccine that is grown in duck eggs, and that is still widely used. Why duck eggs? The reason is that duck eggs require four weeks to hatch, instead of the three weeks required by chicken eggs. So, duck eggs give the slow-growing rabies virus more time to replicate.

By any measure, the procedures for growing viruses in embryonated chicken eggs, developed by Ernest Goodpasture and Alice Woodruff, were a major step forward in vaccine development. Sir Macfarlane Burnet (a Nobel laureate for his work on immunological tolerance) commented 25 years later, “Nearly all the later practical advances in the control of viral diseases of man and animals sprang from this single discovery.”

Addendum 1: Several major advances in cell and tissue culture (the other means for growing viruses outside of an animal) happened after Woodruff and Goopasture reported the development of their embryonated egg method in 1931. For the sake of completeness, several of these are noted.

In 1933, George Gey, at Johns Hopkins, developed the roller tube technique, in which the tissue is placed in a bottle that is laid on its side and continuously rotated around its cylindrical axis. In that way, the media continually circulates around the tissue. Compared to the older process of growing tissues in suspension, the roller culture method allowed the prolonged maintenance of the tissues in an active state and, consequently, the growth of large amounts of virus. The roller tube technique also works very well for cell cultures that attach to the sides of the bottle. [Incidentally, Gey is probably best known for having established the HeLa line of human carcinoma cells from cancer patient, Henrietta Lacks. HeLa cells comprise the first known human immortal cell line and they have served as one of the most important tools for medical research. (See The Immortal Life of Henrietta Lacks, by Rebecca Skloot, 2010.)]

In 1948, John Enders, and colleagues Thomas Weller and Frederick Robbins, used Gey’s methods, to demonstrate for the first time that poliovirus could be grown in non-nervous tissue. This was significant because the potential hazard of injecting humans with nervous tissue was holding up the development of a polio vaccine.

Next, Renato Dulbecco and Marguerite Vogt, working at Caltech, developed procedures to grow large amounts poliovirus in cell culture, adding to the feasibility of an eventual polio vaccine (8). Additionally, Dulbecco and Vogt developed a plaque assay procedure to measure the titer of animal viruses grown in cell culture (7).

Addendum 2: The following excerpt tells of the chance encounter that led Howard Temin to become a virologist (4). Temin was the Nobel laureate who first proposed the retroviral strategy of replication, and who co-discovered reverse transcriptase.

“Howard Temin began working on Rous sarcoma virus in the 1950s, while a graduate student in Renato Dulbecco’s laboratory at Caltech (see reference 7 for more on Dulbecco). However, he worked under the direct supervision of Harry Rubin, an early star in the field, who was, at the time, a postdoctoral fellow in the Dulbecco lab. Nothing was known as yet about the replication of the RNA tumor viruses, as the retroviruses were then known. Moreover, little more was known about the molecular basis of cancer in the 1950s than was known in 1911, when Rous first isolated his virus; a state of affairs that would be much alleviated by future studies of the oncogenic retroviruses.

Rubin was a veterinarian by training, perhaps accounting for his somewhat unique appreciation of an oncogenic virus of chickens, well after even Rous himself had lost interest. And, Rubin was responsible for introducing other young investigators to the RNA tumor virus field, both at Caltech and later at UC Berkely.

Rubin’s mentorship of Temin began somewhat fortuitously, as follows. When they first met, Temin was actually doing his graduate research in another laboratory at Caltech, looking into the embryology of the innkeeper worm, Urechis caupo. But he was also serving as a laboratory assistant in the Caltech general biology course. In that capacity, he was dispatched to Dulbecco’s laboratory to obtain some fertilized chicken eggs for use in the general biology lab. Harry Rubin supplied the chicken eggs. But the chance visit from Temin gave Rubin the opportunity to tell Temin about the chicken sarcoma viruses that were being studied in the Dulbecco laboratory.

Rubin had just recently found that he could induce the neoplastic transformation of a normal chicken cell with a single Rous sarcoma virus particle. He then demonstrated that the transformed cell produced hundreds more transformed daughter cells in a week’s time. During their chance conversation, Rubin suggested to Temin that he (Temin) might make use of that observation to develop a quantitative tissue culture assay for Rous sarcoma virus. Sufficiently intrigued by Rubin’s proposition, Temin switched from embryology to virology and proceeded to develop a focus-forming cell culture assay for Rous sarcoma virus; an assay analogous in principle to a plaque assay. But instead of forming plaques of dead cells, the non-cytocidal Rous sarcoma virus induces the growth of visible foci of morphologically transformed neoplastic cells.”

[Addendum 3: Today, viruses are usually cultivated in readily available continuous cell lines. That said, when I first entered the field in 1970, as a postdoctoral studying the murine polyomavirus, my first task of the week was to prepare the baby-mouse-kidney and mouse-embryo primary cell cultures, which at that time served as the cellular host for that virus. This rather unpleasant chore was a reason I eventually turned to SV40, since I could grow that virus in continuous lines of monkey kidney cells.


1. Edward Jenner and the Smallpox Vaccine, posted on the blog September 16, 2014.

2. Leonard C. Norkin, Virology: Molecular Biology and Pathogenesis, ASM Press, 2010. Chapter 1 tells how viruses were discovered and how their distinctive nature was brought to light.

3. Opening Pandora’s Box: Resurrecting the 1918 Influenza Pandemic Virus and Transmissible H5N1 Bird Flu, posted on the blog April 15, 2014.

4. Howard Temin: “In from the Cold,” posted on the blog December 14, 2013.

5. Greer Williams, Virus Hunters, Alfred A. Knopf, 1960.

6. The Struggle Against Yellow Fever: Featuring Walter Reed and Max Theiler, posted on the blog May 12, 2014.

7. Renato Dulbecco and the Beginnings of Quantitative Animal Virology, posted on the blog December 3, 2013.

8. Jonas Salk and Albert Sabin: One of the Great Rivalries of Medical Science, posted on the blog March 27, 2014.