Tag Archives: Sidney Brenner

The Phage in the Letter

Some of the earliest postings have mysteriously disappeared from the blog. One of these, The Phage in the Letter, is one of my favorites. So, I am re-posting it. Hope you enjoy.

Here is a favorite story of mine that I first heard when I was a graduate student in the mid 1960’s. The major protagonists are Sidney Brenner, who was one of the giants of the “golden age of molecular biology,” and Norton Zinder, also one of the top researchers of the day. Brenner was the first molecular biologist to propose the idea of a messenger RNA, a concept validated by experiments he later did with Mathew Meselson and Francois Jacob. Zinder’s major contributions included the discovery that a bacteriophage can transfer bacterial genes from one bacterial cell to another, a phenomenon referred to as “transduction.” And, apropos this anecdote, Zinder also isolated the f2 bacteriophage, the first virus known to contain a genome composed of RNA, rather than DNA.

Bearing in mind how little was known in 1960, when Zinder isolated bacteriophage f2; the discovery of RNA phages had great potential for use in the study of fundamental molecular processes, such as protein synthesis, including its initiation and termination. Clearly, there were good reasons why molecular biologists of the day, including Brenner, wanted to obtain their own samples of f2 phage. So, as the legend goes, Brenner, among others, requested a sample of f2 from Zinder. And, Zinder wrote back to all, saying that the phage was not available.

Zinder may have thought that Brenner wanted the phage to study RNA replication, a topic that Zinder wanted to keep for himself. Now, here is the delightful part of the story. Knowing how carefree researchers can be in the laboratory, Brenner is said to have dipped Zinder’s letter in a culture of E. coli (the f2 host), thereby readily growing up a stock of f2 for himself.

Amusing as this story might be, the actual facts, at least according to a 1997 article by Brenner1, are as follows. First, after Zinder isolsted f2 phage from a New York sewer, he indeed declined to distribute the phage to the large number of researchers requesting it. Second, Brenner’s reason for wanting f2 was not to use it to work on RNA replication, but instead to use it to test bacteria for the presence of a sex factor. The bacterial sex factor is a gene that encodes a so-called pilus, which is present on male bacteria, enabling them to transfer genes to female bacteria. It also is the bacterial “organ” via which RNA phages enter bacterial cells, thus explaining Brenner’s stated interest in f2. [While it might be thought that f2 can only infect male bacteria, interestingly, male bacteria that are infected with f2 can transfer the virus to female bacteria via their pili. Thus, even bacteria have sexually transmitted infections.] Third, while Brenner may not have isolated f2 from Zinder’s letter, he indeed recommended a similar procedure to several other researchers. Brenner also confesses that he might have added to the original myth by hinting that the story actually might be true. In reality, Brenner isolated many RNA phages himself by taking sewerage from the Cambridge, Massachusetts, sewer treatment plant and plating it on bacteria expressing a sex factor.

figure-6-11-virology

The Micrograph shows an F-pilus emerging from an E. coli cell that is covered with icosahedral MS2 phage particles.  At the end of the pilus, a filamentous fd phage has attached itself. The thicker thread emerging at the right is a bacterial flagellum. Figure 6.11, page 188, From Virology: Molecular Biology and Pathogenesis, by Leonard C. Norkin, ASM Press, 2010.

While Brenner’s work as a molecular biology pioneer may have justified a Nobel Prize, he received the award in 2002 for his later studies of the nematode Caenorhabditis elegans, in which his research group traced the fate of each cell from the zygote right through to the adult worm. Their work established C. Elegans as a model system that is now studied in hundreds of laboratories all over the world.

1Brenner, S. 1997. Bacteriophage Tales. Current Biology 7:R736-737.

Genealogies and a Selective History of Lysogeny: Featuring Friedrich Loeffler, Emile Roux, Andre Lwoff, Elie Wollman, and Francois Jacob

I am intrigued by the genealogies of our leading scientists, since their mentors too were often preeminent scientists. Earlier postings noted the example of Jonas Salk, who did postgraduate studies under Thomas Francis; one of the great pioneers of medical virology, perhaps best known for developing the first influenza vaccine (1, 2). James Watson, who did his doctoral studies in Salvatore Luria’s laboratory, and Renato Dulbecco, who trained under both Luria and Max Delbruck (3), are other examples. In fact, Watson and Dulbecco shared a lab bench in Luria’s lab. Howard Temin did his doctoral (and postdoctoral studies too) in Dulbecco’s lab (4). And Delbruck, who hugely influenced the new science of molecular biology, did his doctoral studies under Max Born, the 1954 Nobel Laureate in physics. Moreover, Delbruck later served as an assistant to Lisa Meitner (5).

Important research paths were undertaken, and major contributions were made, which resulted from less formal interactions between budding young scientists and top scientists of the day. Howard Temin’s chance encounter with Harry Rubin, while on a mission to Dulbecco’s lab, is a case in point (4).

Our last posting told how Louis Pasteur came within a whisker of adding the discovery of viruses to his list of extraordinary achievements (6). Robert Koch played a part in that story for developing his famous postulates, which provided the standard for demonstrating that a particular microbe causes a particular disease.

The Pasteur article also noted that in 1898 Friedrich Loeffler and Paul Frosch isolated the foot and mouth disease virus; the first virus isolated from animals. However, the piece did not point up that Loeffler had trained under Robert Koch. Also, it did not underscore the special significance of what Loeffler and Frosch achieved. In brief, by the 1890s Dmitry Ivanovsky and Martinus Beijerinck had independently discovered that the agent responsible for tobacco mosaic disease passes through bacterium-proof filters. Nevertheless, neither Ivanovsy nor Beijerinck appreciated the implication of their observation. Ivanovsky believed his filters might be defective, while Beijerinck thought the disease was caused by a “living liquid.” In contrast, Loeffler and Frosch, in addition to isolating the first virus that is pathogenic in animals, also carefully considered all possible explanations for their experimental findings, and then were the first to conclude the existence of a kind of microbe too small to be retained by bacterium-proof filters, and too small to be seen under a microscope, and that will not grow on laboratory culture media. They also correctly predicted that smallpox, cowpox, cattle plague, and measles are similarly caused by a “filterable virus.”

Loeffler made another major discovery, fourteen years earlier, in 1884, when he used his mentor’s postulates to identify the bacterium that causes diphtheria, Corynebacterium diphtheriae. Importantly, Loeffler also discovered that when he injected C. diphtheriae into animals, the microbe did not need to spread to the tissues it damaged. This observation led Loeffler to propose the bacteria were secreting a poison or toxin that spread to the remote sites and caused disease there.

Loeffler’s idea of a toxin was a new concept that subsequently was confirmed by Emile Roux, who had been Louis Pasteur’s assistant (6). Using bacterium-proof filters developed by Charles Chamberland in Pasteur’s lab, Roux showed that injecting animals with sterile filtrates of C. diphtheriae cultures caused death with a pathology characteristic of actual diphtheria. Roux was also a co-founder of the Pasteur Institute, where he was responsible for the production of diphtheria anti-toxin; the first effective diphtheria therapy. See Aside 1.

[Aside 1: Earlier, Roux suggested the approach Pasteur used to generate attenuated rabies virus for the Pasteur rabies vaccine (aging spinal cords from rabbits that succumbed to experimental rabies infections of their spinal cords). Roux later withdrew from the rabies project because of a disagreement with Pasteur over whether the rabies vaccine might be safe for use in humans (6).]

So, Loeffler and Roux trained under Koch and Pasteur, respectively. But why might toxin production by C. diphtheriae interest virologists. Well, in 1951, Victor Freeman at the University of Washington showed that the lethal toxins produced by C. diphtheriae (and by Clostridium botulinum as well) are the products of lysogenic bacteriophage carried by the bacteria. This was shown by the finding that avirulent strains of these bacteria became virulent when infected with phages that could be induced from virulent strains. So, are diphtheria and botulism due to bacteria or to viruses? Our chain of genealogies continues with a selective history of lysogeny.

Almost from the beginning of phage research (bacteriophage were discovered independently by Frederick Twort in Great Britain in 1915 and by Félix d’Hérelle in France in 1917), some seemingly normal bacterial cultures were observed to generate phage. Initially, this phenomenon was thought to be a sign of a smoldering, steady state kind of persistent phage infection. Then, during the 1920s and 1930s, the French bacteriologists, Eugene Wollman and his wife Elizabeth, working together on Bacillus megatherium at the Pasteur Institute, provided evidence that instead of a steady state infection, the phage actually enter into a latent form in their host cells; a form in which they might be harmlessly passed from one cell generation to the next. [Considering the state of knowledge back then, note the insightfulness of Eugene Wollman’s 1928 comment, “the two notions of heredity and infection which seemed so completely distinct and in some ways incompatible, . . . almost merge under certain conditions.”] See Aside 2.

[Aside 2: Since some bacterial strains would, on occasion, spontaneously undergo lysis and release bacteriophage, the cryptic bacteriophage they carried were called “lysogenic.” Thus, it is a bit odd that “lysogeny” eventually came to refer to the temperate relationship between these phages and their host cells.]

In the late 1930s, the Wollmans developed a close friendship with Andre Lwoff, their new colleague at the Pasteur Institute. The Wollmans introduced Lwoff to their ideas about lysogeny, but, as Lwoff confesses, he was not then impressed by bacteriophage (7).

The Nazi occupation of Paris during the Second World War began in 1940. From then on, the Jewish Wollmans were prevented from publishing their research findings. Nevertheless, they continued their research at the Pasteur Institute until 1943, when they were seized by the Nazis and sent to Auschwitz. They never were heard from again. Their friend, Lwoff, grieved their loss and became active in the French resistance, gathering intelligence for the Allies, while also hiding downed American airmen in his apartment.

After the war, Lwoff received several honors from the French government for his efforts against the Nazis. He also returned to his research at the Pasteur Institute, studying the genetics of Moraxella; a bacterial pathogen of the human respiratory tract. Because of his work as a microbial geneticist, he was invited to the 1946 Cold Spring Harbor Symposium, where he met Max Delbruck. And as happened to others, meeting Delbruck resulted in Lwoff being seduced by bacteriophage.

Andre Lwoff
Andre Lwoff

Back in Paris, Lwoff’s passionate interest in phages was heightened further by discussions with Jacques Monod, a friend of Max Delbruck, and Lwoff’s neighbor in the attic of the Pasteur Institute. Although Monod was Lwoff’s junior colleague (in fact, it was Lwoff who first stirred Monod’s interest in microbiology), Lwoff’s conversations with the future Nobel Laureate resulted in Lwoff becoming intensely fascinated by lysogeny, which he began to study in 1949 (7).

Because of Lwoff’s earlier friendship with the Wollmans, he chose to study a lysogenic strain of B. megatarium. And, making use of techniques he learned from Renato Dulbecco during a brief stint at Cal Tech, he was able to follow a single lysogenic bacterium, which enabled him to observe that a bacterium could go through multiple rounds of replication without liberating virus. What’s more, he discovered that the phages are released in a burst when the cell lyses, thereby dispelling the still current notion that phages are liberated continuously by lysogenic bacteria. Furthermore, Lwoff showed that lysogenic bacteria usually do not contain phage particles, since none are detected when the cells are experimentally lysed with lysozyme; confirming the earlier (1937) findings of the Wollmans.

Lwoff went on to show that temperate phage genomes are maintained in a previously unknown integrated state in their host cell, and he gave the integrated phage genomes a name, “prophage.” He also discovered, unexpectedly, that irradiating lysogenic bacteria with ultraviolet light could induce the temperate phages to emerge from their latent state, and then replicate in, and lyse their host cells. And, he discovered that the phages lyse their host bacterial cells by producing enzymes that destroy bacterial cell walls.

Prophage
Prophage

Lwoff’s elucidation of the fundamental nature of lysogeny in bacteria would later provide a paradigm for the DNA tumor viruses, the herpesviruses, the oncogenic retroviruses, and HIV. He was awarded a share of the 1965 Nobel Prize for physiology or medicine for his lysogeny research. He shared the award with his fellow Pasteur Institute scientists, François Jacob and Jacques Monod, who received their awards for their pioneering studies of gene regulation in E. Coli.

A rather intriguing aspect of this story is that Lwoff was joined in his research on lysogeny at the Pasteur Institute by Elie Wollman; the son of Eugene and Elizabeth. Elie, born in 1917, escaped from the Nazis in Paris in 1940 and worked in the French resistance as a physician. In 1946, after the war, he came to the Pasteur Institute, where he took its microbiology course and then became Lwoff’s research assistant. Then, in 1947, Elie too happened to meet Max Delbruck (in Paris in this instance) and was invited to join the Cal Tech phage group, where he spent the next two years. See Aside 3.

Elie Wollman
Elie Wollman

[Aside 3: By the early 1940s, the then young Cal Tech “phage group,” headed by Max Delbruck, was on its way to becoming the World’s great center for phage research (5). However, the American group had little interest in lysogeny, since Delbrück neither believed in it, nor saw its importance. Instead, Delbruck was totally committed to the study of lytic phages. Then, during the late 1940s, Delbruck began to lose interest in molecular biology and looked for new research directions. When he thought of turning his attention to brain function, he asked his group to put together a series of seminars based on papers written by prominent neuroscientists of the day. Elie Wollman was the only member of the Cal Tech group who declined to participate in that endeavor, since he was totally committed to bacteriophage. Moreover, Elie was the one who finally convinced Delbruck that “such a thing as lysogeny does exist (7).”

Elie himself tells us that when he looked into a bibliographical index at Cal Tech, he came across an index card referring to his parent’s 1937 paper, which reported their finding that lysogenic cells contain a non-infectious form of the phage (8). “Delbruck’s comment on the card was “Nonsense.”]

After Eli’s two-year stint with Delbruck in Pasadena, he returned to the Pasteur Institute. Meanwhile, Francois Jacob had come to the Institute in the hope of beginning a research career in genetics under the tutelage of either Lwoff or Monod. Before that, in 1940, Jacob, who also was Jewish, left medical school in occupied France to join Free French Forces in London. He then served as a medical officer in North Africa, where he was wounded, and was later severely wounded at Normandy in August 1944, ending his dream of becoming a surgeon.

Francois Jacob
Francois Jacob

Initially, Jacob was spurned by both Lwoff and Monod, but was finally taken on by Lwoff, who suggested that he, Jacob, start work on “the induction of the prophage.” Jacob confesses he had no idea what that meant, but he accepted the project. Thus it came to pass that Francois Jacob and Elie Wollman established a particularly close and friendly collaboration, in which they turned their attention to the lambda prophage of E. coli. Their initial goal was to clarify the events of bacterial conjugation so that they might then understand the phenomenon whereby a temperate phage carried by a lysogenic bacterium is activated to undergo vegetative replication when that bacterium conjugates with, and transfers its integrated phage genome to a non-lysogenic bacterium.

To accomplish their goal, Wollman and Jacob began with experiments to locate the lambda genome on the chromosome of the lysogenic cell, and to follow its transfer during conjugation into a non-lysogenic recipient cell. A key feature of their experimental approach was conceived by Wollman (8). It was simply to interrupt conjugation between a lysogenic donor (Hfr) cell and a non-lysogenic recipient (F-minus) cell, at various times, by using a kitchen blender to break the mating cells apart. Using the blender to interrupt conjugation, and also using bacterial strains in which the recipient bacteria contained a set of mutations, and plating the mating mixture on selective media, Wollman and Jacob were able to measure the length of time required for each of the corresponding wild-type genes to be transferred from the Hfr donor cells to the F-minus recipient cells. Indeed, the time intervals between the appearances of each wild type gene in the recipient cells directly correlated with the distances between the genes, as independently determined by recombination frequencies. Thus, the interrupted mating approach gave Wollman and Jacob a new means to construct a genetic map of the bacterium, while also enabling them to locate the integrated phage genome on that map. Their experimental approach also allowed Wollman and Jacob to establish that, during conjugation, the donor cell’s genome is transferred linearly to the recipient cell. [The designation “Hfr” was coined by William Hayes because Hfr strains yielded a high frequency of recombinants when crossed with female strains.]

Importantly, Wollman and Jacob’s study of the activation of a lambda prophage when it enters a non-lysogenic F-minus recipient (a phenomenon they called “zygotic induction”), showed that the temperate state of the lambda prophage is maintained by some regulatory factor present in the cytoplasm of a lysogenic bacterium, but which is absent from a non-lysogenic one. It led to the discovery of a “genetic switch” that regulates the activation of the lysogenic bacteriophage, and of a phage-encoded repressor that controls the switch. These findings are among the first examples of gene regulation, and are credited with generating concepts such as the repressor/operator, which were firmed up by Jacob and Monod in their Nobel Prize-winning studies of the E. coli lac operon. See Aside 4.

[Aside 4: At the time of Wollman and Jacob’s interrupted mating experiments, kitchen blenders had not yet made their way to European stores. Eli was aware of these appliances only because of his earlier stint at Cal Tech. He bought a blender for his wife before returning to France, and then “borrowed” it for these experiments.]

Wollman and Jacob went on to demonstrate that the fertility or F factor, which confers maleness on the donor bacteria, can exist either in an integrated or an autonomous state. Indeed, this was the first description of such a genetic element, for which they coined the term “episome;” a term now largely replaced by “plasmid.”

Wollman and Jacob also determined that the E. coli chromosome is actually a closed circle. The background was as follows. Only one F factor is integrated into the chromosome of each Hfr strain, and that integration occurs at random. And, since the integrated F factor is the origin of the gene transfer process from the Hfr cell to the F-minus cell, interrupted mating experiments with different Hfr strains gave rise to maps with different times of entry for each gene. However, when these time-of-entry maps were taken together, their overlapping regions gave rise to a consistent circular map. The discovery of the circular E. coli chromosome was most intriguing, because all previously known genetic maps were linear. See Aside 5.

[Aside 5: The bacterial strain used by Wollman and Jacob in their study of zygotic induction was, in fact, the original laboratory strain of E. coli (i.e. E. coli K12) that was isolated in1922 from a patient with an intestinal disorder. In 1951, Esther Lederberg discovered that K12 is lysogenic. The discovery happened when she accidentally isolated non-lysogenic or “cured” derivatives of E. coli K12 that could be infected by samples of culture fluid from the parental K12 strain, which sporadically produced low levels of phage. Esther gave the lysogenic phage its name, lambda.

Esther was the wife of Joshua Lederberg, who received a Nobel Prize in 1958 for discovering sexual conjugation in bacteria, and the genetic recombination that might then ensue. Prior to Lederberg’s discoveries, genetic exchange and recombination were not believed to occur in bacteria. Lederberg’s Nobel award was shared with George Beadle and Edward Tatum (the latter was Lederberg’s postdoctoral mentor) for their work in genetics.

Joshua Lederberg, working with Norton Zinder (9), also discovered transduction, whereby a bacterial gene can be transferred from one bacterium to another by means of a bacteriophage vector. And, working together with Esther, Joshua discovered specialized transduction, whereby lambda phage transduces only those bacterial gene sequences in the vicinity of its integration site on its host chromosome. Esther and Joshua also worked together to develop the technique of replica plating, which enabled the selection of bacterial mutants from among hundreds of bacterial colonies on a plate and, more importantly perhaps, to provide direct proof of the spontaneous origin of mutants that have a selective advantage.]

In 1954 Elie Wollman was appointed a laboratory head in his own right at the Pasteur Institute. He retired from research in 1966 to become vice-director of the Institute, which he then rescued from a severe financial crisis. He continued to serve in that role for the next 20 years, while garnering numerous prestigious awards for his research and service.

Francois Jacob earned his doctorate in 1954 for his lysogeny studies. Then, realizing that he and Jacques Monod, his senior neighbor in the Pasteur Institute attic, were actually studying the same phenomenon, gene repression, he entered into a hugely productive collaboration with Monod that led to the elucidation of the genetic switch that regulates beta-galactosidase synthesis in E. coli (9). Their collaboration established the concepts of regulator genes, operons, and messenger RNA, for which they shared in the 1965 Nobel Prize for physiology or medicine, as noted above. See Asides 6 and 7.

Jacques Monod
Jacques Monod

[Aside 6: One of Jacob and Monod’s first experiments was the famous 1957 PaJaMa experiment, carried out in collaboration with Arthur Pardee, who was then on sabbatical at the Pasteur Institute. In brief (for aficionados), a Lac-positive, Hfr strain was grown in an inducer-free media, and then mated, still in an inducer-free media, with a Lac-minus, F-minus strain. (Note that the deletion in the Lac-minus, F-minus strain included the LacI gene, which encodes the yet to be discovered lac repressor.) As expected, in the absence of inducer, no beta-galactosidase is detected initially. But, after the donor DNA sequence, which bears the normal Lac genes (including LacI), is transferred to the Lac-minus recipient, it initially finds no repressor in the recipient cell and begins to synthesize beta-galactosidase. Then, as the donor cell’s lac repressor gene begins to be expressed in the recipient cell, in the inducer-free media, expression of the donor cell’s beta-galactosidase gene ceases. The PaJaMa experiment thus showed that the genetic regulation of enzymatic induction depends on a previously unknown regulatory molecule, the repressor.

Notice the similarity between the rationale for the PaJaMa experiment and that of the earlier Wollman and Jacob experiment on zygotic induction. In each instance, a process regulated by a repressor is suddenly in the repressor-free environment of a recipient cell.]

[Aside 7: In June of 1960, Francois Jacob, Matt Meslson, and Sidney Brenner came together in Max Delbruck’s Cal Tech lab to carry out an experiment that confirmed the existence of messenger RNA. The key to the experiment was their ability to distinguish ribosomes present in the cell before infection from ribosomes that might have been made after infection. They cleverly did that by incorporating heavy isotopes into ribosomes before infection, so that they might be separated in a density gradient from ribosome made after infection. Then, they showed that RNA produced by T2 phage in E. Coli associates with ribosomes that were synthesized by the cell entirely before infection. Furthermore, the new phage-specific RNA directs the synthesis of phage-specific proteins on those “old” ribosomes. I vote for this experiment as the most elegant in the entire history of molecular biology (11).]

Incidentally, during the Nazi occupation of Paris, Monod too was active in the French Resistance, eventually becoming chief of staff of the French Forces of the Interior. In that capacity, he helped to prepare for the Allied landings in Normandy. Monod and Jacob each received France’s highest honors for their wartime service.See Aside 7.

[Aside 7: I am singularly intrigued by the experiences of Andre Lwoff, Elie Wollman, Francois Jacob, and Jacques Monod during the Second World War. References 3 and 5 recount the wartime experiences of Renato Dulbecco and of Max Delbruck, and of other great scientists of the time. Other posts on the blog give accounts of virologists courageously placing themselves in harm’s way under different circumstances. Examples include pieces featuring Ciro de Quadros, Carlo Urbani, Peter Piot, and Walter Reed.]

References:

(1) Jonas Salk and Albert Sabin: One of the Great Rivalries of Medical Science, Posted on the blog March 27, 2014.

(2) Ernest Goodpasture and the Egg in the Flu Vaccine, Posted on the blog November 25, 2014.

(3) Renato Dulbecco and the Beginnings of Quantitative Animal Virology, Posted on the blog, December 4, 2013.

(4) Howard Temin: “In from the Cold,” Posted on the blog December 16, 2013
(5) Max Delbruck, Lisa Meitner, Niels Bohr, and the Nazis, Posted on the blog November 12, 2013.

(6) Louis Pasteur: One Step Away from Discovering Viruses, Posted on the blog January 7, 2015.

(7) Lwoff, Andre, The Prophage and I, pp. 88-99, in Phage and the Origins of Molecular Biology, J. Cairns, G.S. Stent, and J.D. Watson eds., Cold Spring Harbor Laboratory Press, 1966.

(8) Wollman, Elie L, Bacterial Conjugation, pp. 216-225, in Phage and the Origins of Molecular Biology, J. Cairns, G.S. Stent, and J.D. Watson eds., Cold Spring Harbor Laboratory Press, 1966.

(9) “The Phage in the Letter,” Posted on the blog November 4, 2013.

(9) Francois Jacob, Nobel Lecture, December 11, 1965.

(11) Norkin, Leonard C., Virology: Molecular Biology and Pathogenesis, ASM Press, 2010.

Andre Lwoff

Sidney Brenner: “Only Joking”

In earlier postings 1, 2, we separately encountered Sidney Brenner and Max Delbruck, each of whom possessed a singularly strong personality.  Now, we encounter them together in a short anecdote, in which Brenner defines the “perfect practical joke” and proffers an example. The victim is Max Delbruck.

We glimpsed Sidney Brenner’s mischievous sense of humor in The Phage in the Letter. The current tale begins now with his comment: “I have always wanted to invent the perfect practical joke.” Acknowledging that practical jokes can often be cruel, Brenner tells us that his criteria for the perfect practical joke are that it “should have an economy and convey enough of the conjurer’s art so that nobody is totally dismayed.” 3

Perhaps to ease any guilt he might have felt over the episode recounted here, Brenner hastens to tell us that Max Delbruck, the victim, was himself a great player of practical jokes. And, apropos this particular tale, he also tells us that Delbruck liked to arrange for people to attend lectures for the purpose of embarrassing them there.

Brenner saw the opportunity to turn the tables on Delbruck when he (Brenner) was invited to give a talk at Caltech. Upon accepting, Brenner informed friends at Caltech that he preferred speaking to a small group. However, Brenner deliberately kept this slight detail from Delbruck. As the story then unfolds, when Brenner arrived to give his talk, he was escorted to Delbruck’s office, where a small group of his friends were waiting. They next proceeded to a small seminar room, presumably because his friends had adhered to his request. A few other colleagues were waiting there and, without further ado, Brenner launched into his talk.

Sydney Brenner in 1962
Sydney Brenner in 1962

Bearing in mind Brenner’s stature and, consequently, the large turnout expected for his lecture, Delbruck was understandably confused by what was transpiring. So, he got up and left the room to check the notice board to see what room had been reserved for Brenner’s talk. Through a crack in the door, Brenner could witness Delbruck’s bewilderment. A large lecture hall indeed had been reserved for Brenner’s lecture, and some 300 listeners were already seated there waiting to hear it.

Brenner describes what then transpired in the small room, as follows: “Seizing the opportunity, I immediately increased speed, took off my jacket and began to settle in for a full hour. Max returned, puzzled by what he should do next; the looks of dismay had turned to panic and people had started to signal to each other.” Well, Brenner was eventually stopped and the small group proceeded to the large lecture room, where “Max merely signaled me to talk with a limp wave and no introduction….This was perfection, as some people knew that I knew, but Max did not.”

1. The Phage in the Letter

2. Max Delbruck, Lise Meitner, Niels Bohr, and the Nazis

3. Brenner, S., Only Joking, Current Biology 8: R825, 1998.

The Phage in the Letter

Here is a favorite story of mine that I first heard when I was a graduate student in the mid 1960’s. The major protagonists are Sidney Brenner, who was one of the giants of the “golden age of molecular biology,” and Norton Zinder, also one of the top researchers of the day. Brenner was the first molecular biologist to propose the idea of a messenger RNA, a concept validated by experiments he later did with Mathew Meselson and Francois Jacob. Zinder’s major contributions included the discovery that a bacteriophage can transfer bacterial genes from one bacterial cell to another, a phenomenon referred to as “transduction.” And, apropos this anecdote, Zinder also isolated the f2 bacteriophage, the first virus known to contain a genome composed of RNA, rather than DNA.

Bearing in mind how little was known in 1960, when Zinder isolated bacteriophage f2; the discovery of RNA phages had great potential for use in the study of fundamental molecular processes, such as protein synthesis, including its initiation and termination. Clearly, there were good reasons why molecular biologists of the day, including Brenner, wanted to obtain their own samples of f2 phage. So, as the legend goes, Brenner, among others, requested a sample of f2 from Zinder. And, Zinder wrote back to all, saying that the phage was not available.

Zinder may have thought that Brenner wanted the phage to study RNA replication, a topic that Zinder wanted to keep for himself. Now, here is the delightful part of the story. Knowing how carefree researchers can be in the laboratory, Brenner is said to have dipped Zinder’s letter in a culture of E. coli (the f2 host), thereby readily growing up a stock of f2 for himself.

Amusing as this story might be, the actual facts, at least according to a 1997 article by Brenner1, are as follows. First, after Zinder isolsted f2 phage from a New York sewer, he indeed declined to distribute the phage to the large number of researchers requesting it. Second, Brenner’s reason for wanting f2 was not to use it to work on RNA replication, but instead to use it to test bacteria for the presence of a sex factor. The bacterial sex factor is a gene that encodes a so-called pilus, which is present on male bacteria, enabling them to transfer genes to female bacteria. It also is the bacterial “organ” via which RNA phages enter bacterial cells, thus explaining Brenner’s stated interest in f2. [While it might be thought that f2 can only infect male bacteria, interestingly, male bacteria that are infected with f2 can transfer the virus to female bacteria via their pili. Thus, even bacteria have sexually transmitted infections.] Third, while Brenner may not have isolated f2 from Zinder’s letter, he indeed recommended a similar procedure to several other researchers. Brenner also confesses that he might have added to the original myth by hinting that the story actually might be true. In reality, Brenner isolated many RNA phages himself by taking sewerage from the Cambridge, Massachusetts, sewer treatment plant and plating it on bacteria expressing a sex factor.

Micrograph of an F-pilus emerging from an E. coli cell that is covered with icosahedral MS2 phage particles.  At the end of thepilus, a filamentous fd phage has attached itself. The thicker thread emerging at the right is a bacterial flagellum. Figure 6.11, page 188, From Virology: Molecular Biology and Pathogenesis, by Leonard C. Norkin, ASM Press, 2010.

While Brenner’s work as a molecular biology pioneer may have justified a Nobel Prize, he received the award in 2002 for his later studies of the nematode Caenorhabditis elegans, in which his research group traced the fate of each cell from the zygote right through to the adult worm. Their work established C. Elegans as a model system that is now studied in hundreds of laboratories all over the world.

1Brenner, S. 1997. Bacteriophage Tales. Current Biology 7:R736-737.